Code: EC7T1

IV B.Tech - I Semester – Regular/Supplementary Examinations October - 2018

OPTICAL COMMUNICATIONS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks

 $11 \times 2 = 22$

1.

- a) Write the Snell's law.
- b) Differentiate between Step index and Graded index fibers.
- c) What is 'Microbend loss'?
- d) What is 'Fusion splicing'?
- e) Draw the structure of 'Optical Resonator Cavity'.
- f) Write the working principle of 'LASER'.
- g) Define the term 'External quantum efficiency'.
- h) Write about 'Sensitivity' of a photo detector.
- i) What is 'Attenuation'?
- j) Write about 'SONET'.
- k) Write the uses of Repeaters in optical fiber communication system.

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48$

- 2. a) Describe in detail about different modes in Cylindrical fibers.8 M
 - b) Define 'Total Internal Reflection' and 'Acceptance angle' in ray optics.4 M
 - c) Explain various advantages of optical fiber communication.

 4 M
- 3. a) Explain about various Dispersion losses which occur in Optical fiber communication. 8 M
 - b) Describe in detail about:

8 M

- i) Different Misalignments in fibers
- ii) Joint losses occur in Single mode and Multimode fibers.
- 4. a) Explain about construction and working of Double Hetrojunction LED. 8 M
 - b) Describe in detail about Optical emission from semiconductors. 8 M

5. a) Explain the construction and operation of semi conductor	
Photodiode.	8 M
b) Discuss the terms:	8 M
i) Absorption ii) Responsitivi	ity
iii) Derive the expression for quantum e	fficiency.
6. a) Describe the working principle and open	ration of OTDR.
	8 M
b) Explain about Interferometric method of	f measurement of
Refractive Index.	8 M